THERMAL DETECTOR TECHNOLOGY DEVELOPMENT IN THE OFFICE OF AEROSPACE TECHNOLOGY

International Workshop on Thermal Detectors

June 20, 2003

Chris Moore

Code R / NASA Headquarters

christopher.moore@nasa.gov

Mission & Science Measurement Technology

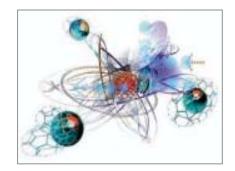
Theme Objectives and Programs

Theme Objectives

Mission Risk Analysis

Develop the capability to assess of complex systems.

Science Driven Mission Architectures and Technology

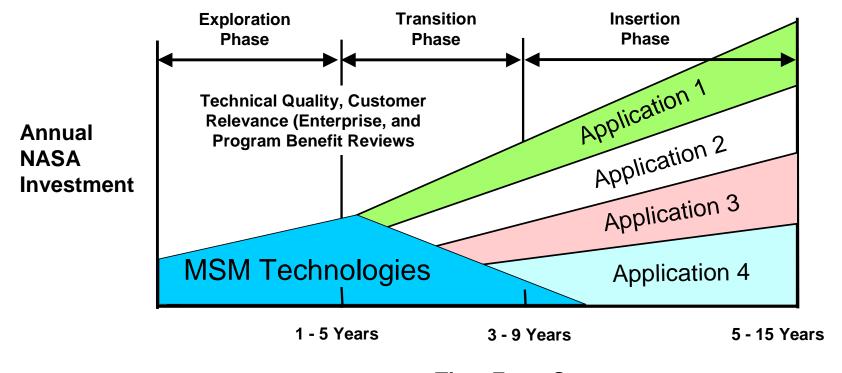

Define new system concepts and and manage risk in the synthesis demonstrate new technologies which enable new science measurements.

Create Knowledge from Scientific Data

Develop break-through information and communication systems to increase our understanding of scientific data and phenomena

Engineering for Complex Systems **Programs**

Enabling Concepts & Technologies


Computing, Information & **Communications Technology**

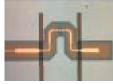
Mission and Science Measurement Technology

Development Strategy

Time From Start

Enabling Concepts & Technologies Program

Projects


Advanced System Concepts

Conceptual studies and systems analysis of revolutionary aerospace system concepts that have the potential to leap well past current plans, or to enable new visions for NASA's strategic plans.

Energetics

Development of advanced power and propulsion technologies to enable lower-cost missions with increased capability, and to extend mission reach.

Advanced Measurement and Detection

Development of miniaturized, highly-integrated, and efficient instruments and sensors to provide increased scientific return.


Revolutionary Spacecraft Systems

Development of revolutionary spacecraft systems and architectures to enable distributed science data collection, explore extreme environments, and lower mission costs.

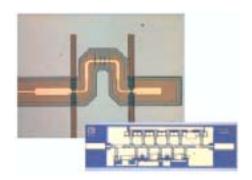
Large Space Systems

Development of concepts for large, ultra-lightweight space structures and apertures to expand mission capabilities, and enable new visions of the Earth and the Universe.

Space NRAs

Broadly announced peer-reviewed solicitations to capture innovative ideas from external organizations, to leverage high-payoff emerging technologies, and to complement NASA capabilities in critical areas.

Advanced Measurement & Detection Technologies

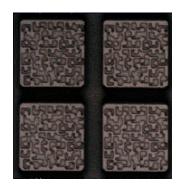

High efficiency, tunable laser transmitters for active sensing

High efficiency detectors (IR, visible, UV, X-ray) for focal plane assemblies

Instrument optics

Submillimeter sources, amplifiers, and detectors

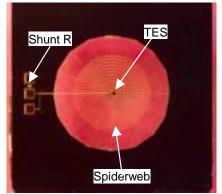
Cryocoolers

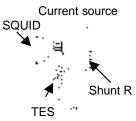


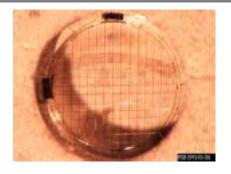
In situ biochemical sensors

Direct Detectors and Focal Planes

MW/LW Infrared
Uncooled IR thermopiles
Quantum Well focal planes

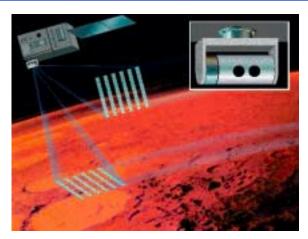

Quantum Well Infrared Photodetector (QWIP) pixels




Si: As BIB arrays

Micromesh Bolometer Arrays
Superconducting TES and Kir

Superconducting TES and Kinetic Inductance

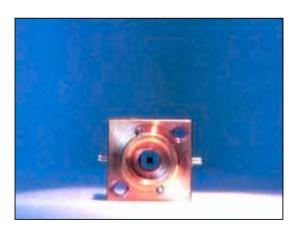


Micromesh bolometer


Superconducting TES bolometer

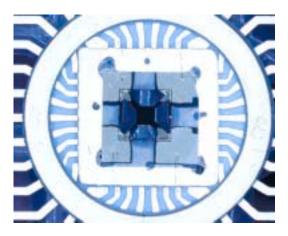
Uncooled Thermopile Broadband Detector Arrays

Mars Climate Sounder


Prototype Thermopile 2D Array

- Accurate thermal radiometry without temperature stabilization or optical chopping
- Developing 128x128 arrays with D*=109 cmHz^{1/2}/W and 20 mW power.
- Thermopile linear detectors selected for 2005 Mars Reconnaissance Orbiter atmospheric sounder
- Smaller, lighter, lower power instrument (7 vs. 40 kg, 10 vs. 40 W)
- Investigator: Marc Foote JPL

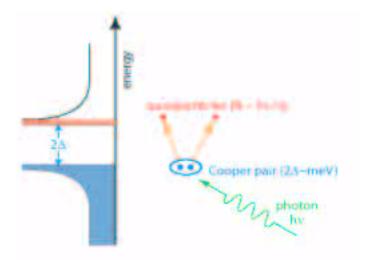
Superconducting Bolometers


TES Bolometer

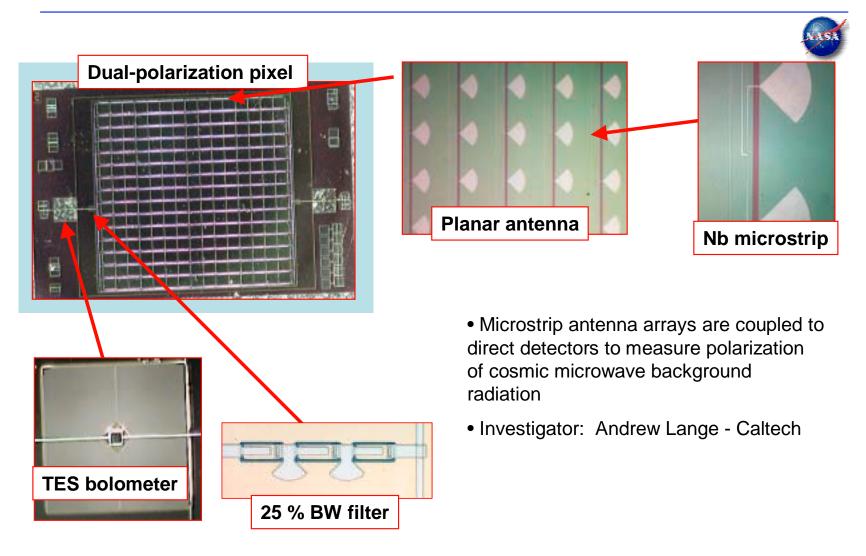
- Transition Edge Superconducting (TES) Far IR bolometer operating at 90 Kelvin
- High Temperature Superconducting GdBCO thin film on 7 µm thick single crystal sapphire

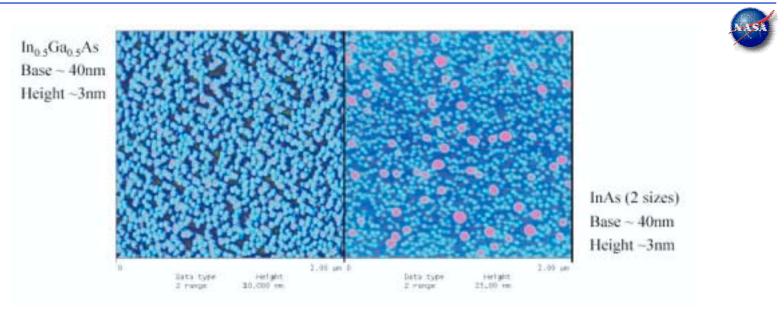
HTS Bolometer

- Single pixel and 2 D arrays of (HTS) bolometers:
 - –Substrates: monolithic sapphire and/or SOI (m1 µm thick)
 - -Sensing elements: YBCO and MgB2 thin films
 - -Operating temps: 40K mT m90K
- First fully functioning HTS bolometer on monolithic sapphire membrane May 2003
- Investigator: Brooke Lakew GSFC

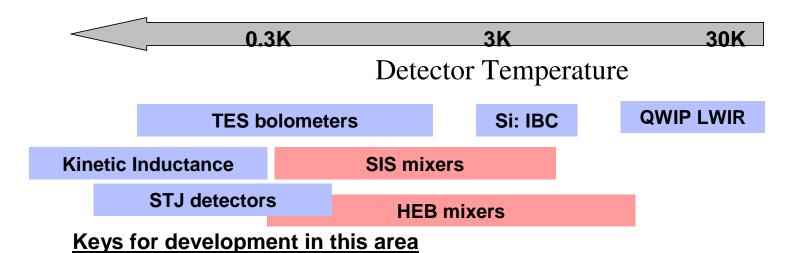

Kinetic Inductance Detectors

Advanced photon detector arrays for astrophysics from mm to X-ray wavelengths


- New concept: microwave readout of quasiparticles
 - Quasiparticles change kinetic inductance (surface reactance) of superconductor
 - Kinetic inductance influences resonant frequency of thin film microwave circuit
 - Measure microwave transmission amplitude and phase
- Investigator: Jonas Zmuidzinas Caltech


Superconducting Antenna Coupled Multi-Frequency Bolometer Arrays

Quantum Dot Infrared Photodetectors (QDIPs)


- Semiconductor quantum dots confine carriers in all 3 dimensions, creating discrete energy levels.
- QDIPs are promising higher quantum efficiency, lower dark current, higher operating temperature, and high radiation tolerance.
- InGaAs and InAs quantum dots have been grown in GaAs substrates with Molecular Beam Epitaxy
- Investigator: Sarath Gunapala JPL

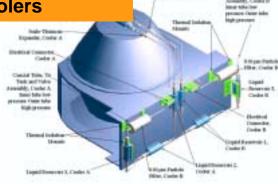
Cryogenic Technology

Improvement in Cryogenic Technology is CRITICAL to allow advancements in high performance focal planes.

- Cooling power consistent with focal plane or mixer
- Vibrationless methods to reduce microphonic noise
- Ability to reject heat appropriately and interface with other stages of cooling system

Cryogenic Coolers

20K Pulse Tubes with **Advanced Regenerators**


20 K Pulse Tube (concepualization) 95 K Pulse Tube (mock-up)

4 - 10 Kelvin **Turbo-Brayton**

Coolers

20K and 6K Sorption **Coolers**

Stage (Sait Pill, Magnet and Second Stage (Selt Pill and + Magnetic Sheeding: Facebook Gas-Gap ---Heat Switch Thormal Strap Between the to Their Stage (out of right) Continuous and Second Stages

MSMT-2004 NASA Research Announcement

 NASA Research Announcements (NRAs) are broadly-competed peer-reviewed solicitations for exploratory research and technology development activities.

- Code R will issue a \$39M NRA for Mission and Science Measurement Technologies (MSMT-2004) on August 4. The NRA will include three main technology areas:
 - Advanced Measurement & Detection (includes focal planes and cryocoolers)
 - Large Apertures
 - Low Power Electronics
- Draft NRA will be posted on the web June 23 for public comment at: http://research.hq.nasa.gov/
- Bidders Conference will be held at University of Maryland Conference Center on July 15.
- NRA is open to all categories of organizations, including industry, universities, nonprofit institutions, NASA Centers, and other government agencies.
- Typical funding awards are \$300K \$500K per year for 3 years.